Abstract

The behavior of reverse-biased silicon optical sensors based on non-ideal metal–leaky insulator–silicon (MLIS) capacitors was studied. A highly conductive tin-doped indium oxide film was used as a transparent metallic gate deposited on a leaky insulator containing many through pores. The tin-doped indium oxide, by penetrating in these pores, forms microscopic Schottky diodes on the n-silicon surface. The accumulation of the photo-generated holes under pores-free regions of the insulator surrounding these small-size Schottky diodes gives rise to the experimentally obtained photocurrent gain and self-sustained current oscillations, with a period that depends on the irradiation intensity. The modulation of the Schottky barrier height along the perimeter of the diodes by the holes accumulated under the insulator surrounding these diodes is suggested to explain the behavior of these MLIS structures. The validity of this model was verified by observing a similar behavior in optical sensors with a thermally grown silicon dioxide layer on the silicon surface. In such a case, microscopic Schottky diodes were formed by the penetration of the gate material in small-size “windows” specially etched in the silicon dioxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.