Abstract

Since acid etching is easily controlled and effective, it has become one of the most common methods of surface modification. However, the behavior of etching is seldom discussed. In this study, different surfaces of titanium were prepared by changing the etching temperature and time. Surface topography, roughness, contact angles, surface crystalline structure, hydrogen concentration and mechanical properties were observed. As a result, surface topography and roughness were more proportional to etching temperature; however, diffusion of hydrogen and tensile strength are more time-related to titanium hydride formation on the surface. Titanium becomes more hydrophilic after etching even though the micropits were not formed after etching. More and deeper cracks were found on the specimens with more hydrogen diffusion. Therefore, higher temperature and shorter time are an effective way to get a uniform surface and decrease the diffusion of hydrogen to prevent hydrogen embrittlement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.