Abstract

Cognitive networks are designed based on the concept of dynamic and intelligent network management, characterizing the feature of self-sensing, self-configuration, self-learning, self-consciousness etc. In this paper, focusing on the spectrum sharing and competition, we propose a novel OODA (Orient-Observe-Decide-Act) based behavior modeling methodology to illustrate spectrum access problem in the heterogenous cognitive network which consists of multiple primary networks (PN, i.e. licensed networks) and multiple secondary networks (SN, i.e. unlicensed networks). Two different utility functions are designed for primary users and secondary users respectively based on marketing mechanism to formulate the decide module mathematically. Also, we adopt expectation and learning process in the utility design which considers the variance of channels, transmission forecasting, afore trading histories and etc. A double auction based spectrum trading scheme is established and implemented in two scenarios assorted from the supply-and-demand relationship i.e. LPMS (Less PNs and More SNs) and MPLS (More PNs and Less SNs). After the discussion of the Bayesian Nash Equilibrium, numerical results with four bidding strategies of SNs are presented to reinforce the effectiveness of the proposed utility evaluation based decision modules under two scenarios. Besides, we prove that the proposed behavior model based spectrum access method maintains frequency efficiency comparable with traditional centralized cognitive access approaches and reduces the network deployment cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.