Abstract

Myogenic tone is intrinsic to vascular tissue and plays an important role in determining basal coronary resistance. However, the effect of the beating heart on myogenic tone is unknown. We investigated the effects of myocardium-derived vasoactive factors on the myogenic tone of coronary microvessels in the resting condition and during increased metabolism. Pressurized isolated coronary vessels (detector vessel, DV) of rabbits (n = 33, maximal inner diameter 201 +/- 8 microm) were gently placed on beating hearts of anesthetized dogs and observed with an intravital microscope equipped with a floating objective. To shut off the myocardium-derived vasoactive signals, we placed plastic film between DV and the heart. The intravascular pressure was changed from 120 to 60 cmH(2)O, and pressure-diameter curves were obtained with and without the contact of DV and the myocardium. The direct contact shifted the pressure-diameter curve upward (P < 0.05 vs. without contact), and myogenic tone was reduced by approximately 40%. When endothelium of DV was denuded, the shift persisted, but the degree of shift was reduced to 10% (P < 0.05 vs. with endothelium). The shift was abolished by glibenclamide, an ATP-sensitive potassium (K(ATP)) channel blocker. A similar upward shift was induced by rapid pacing, but the shift was not blocked by glibenclamide. We conclude that the beating myocardium counteracts myogenic tone by releasing transferable vasoactive signals that affect the endothelium and the vascular smooth muscle, and that the signals are solely mediated by the activation of K(ATP) channels, unlike the rapid pacing-induced vasoactive factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.