Abstract
This paper presents a novel beamforming optimization method for downlink underlying multiple-input single-output (MISO) cognitive radio (CR) networks. We formulate a beamforming optimization problem to maximize the sum rate of a CR network with one primary user (PU) pair and multiple secondary user (SU) pairs, subject to the quality of service requirement of the PU given the transmit power budgets at the base stations (BSs). To find the solution of the nonconvex problem, an iterative solving algorithm is proposed based on successive convex approximation (SCA). In developing the algorithm, we first reformulate the original nonconvex objective function as the difference of two concave functions. A concave substitute function is then derived using the one-order Taylor expansion. Based on this concave substitute, a convex semidefinite programming (SDP) is derived and solved. The new solution is then utilized to construct a new substitute. This process is repeated until a smooth point is reached. Simulation results show the effectiveness of the proposed SCA-based beamforming algorithm to achieve spectrum sharing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.