Abstract

A low beamlet divergence is crucial for the efficiency of the ITER-NBI systems, since it affects the transmission of the beam through the duct. There is a requirement of 7 mrad e-folding divergence for the ITER Heating Neutral Beam. Significantly higher divergences (10–15 mrad) have been observed in RF-source based experiments albeit at low beam energy. This could be the consequence of a broad perpendicular velocity distribution of the H−/D− particles before extraction. This paper explores this hypothesis and its implications for ITER. To estimate H−/D− perpendicular temperatures in the RF-driven BATMAN Upgrade test facility, spatially resolved measurements of the beam power density are compared with IBSimu calculations. The estimated perpendicular temperatures show a strong dependence on the source filling pressure, decreasing from approximately 4 eV at 0.3 Pa to 2 eV at 0.4 Pa. Ion-optics calculations of the ITER-HNB grid system are performed to evaluate whether the temperatures estimated in the BATMAN Upgrade test facility are tolerable in view of beam-grid interaction and beamline transmission. The beamline transmission is fairly insensitive to the perpendicular temperature, but the heat loads at the downstream grids increase with the perpendicular temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.