Abstract
Mechanical properties of slender, prismatic structures are typically analyzed based on classical beam mechanics (Timoshenko’s shear force bending, Vlasov’s theory of warping torsion, …). There it is assumed that the cross-section remains rigid in its projection plane and in-plane distortional deformations of the cross-section are neglected. Such a model is predictive in case of static gradually distributed loading, and solid cross-sections, however, in case of thin-walled crosssections and dynamic loading severe deviations might occur. Therefore, a generalized beam theory is proposed, where warping fields and accompanied distortional fields of the cross-section are axially distributed each based on one generalized degree of freedom. The evaluation of pairs ofwarping and distortional fields in ascending order of importance is performed using a specific reference beam problem (RBP), where three-dimensional elasticity theory is applied in connection with semi-analytical finite elements (SAFE). Convergence of the resulting formulation is ensured by increasing the number of contributing pairs of warping and distortional fields. The resulting formulation yields significantly better results compared to classical beam mechanics especially in the dynamic regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.