Abstract

Brain-derived neurotrophic factor (BDNF) plays an important role in nervous system development and function and it is well established that BDNF is involved in the pathogenesis of a wide range of psychiatric disorders. Recently, numerous studies have associated the DNA methylation level of BDNF promoters with certain psychiatric phenotypes. In this review, we summarize data from current literature as well as from our own analysis with respect to the correlation of BDNF methylation changes with psychiatric disorders and address questions about whether DNA methylation related to the BDNF can be useful as biomarker for specific neuropsychiatric disorders.

Highlights

  • Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family which plays an important role in neural differentiation, survival of nerve cells, neurite outgrowth, and synaptic plasticity

  • We have summarized the information about individual CpG sites and CpG regions previously tested in BDNF promoters and shown to be connected to psychiatric disorders

  • In the databases, the DNA methylation level was assessed at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 Bead Chip. 25 probes corresponding to CpG sites situated in the BDNF promoter I/exon I (Fig. 1a) and to CpG sites situated in the BDNF promoter IV/exon IV were included in the analysis (Fig. 1b)

Read more

Summary

Introduction

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family which plays an important role in neural differentiation, survival of nerve cells, neurite outgrowth, and synaptic plasticity. BDNF has been shown to regulate the development, plasticity and survival of dopaminergic, cholinergic and serotonergic neurons. It regulates glutamatergic neurotransmitter release and promotes the development of GABAergic neurons. BDNF is widely expressed throughout the mammalian brain, including the cerebral cortex, hippocampus, basal forebrain, striatum, hypothalamus, brainstem, limbic structures and cerebellum [1]. This makes BDNF a key factor in learning and memory, reward-related processes, cognitive function and circuit formation. The human BDNF has a complex gene structure, consisting of 11 exons (I–V, Vh, VI-VIII, VIIIh, IX), 9 of which (exon I–VII, IX) contain functional promoters.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.