Abstract

Caspases are intracellular proteases that cleave substrates involved in apoptosis or inflammation. In C. elegans, a paradigm for caspase regulation exists in which caspase CED-3 is activated by nucleotide-binding protein CED-4, which is suppressed by Bcl-2-family protein CED-9. We have identified a mammalian analog of this caspase-regulatory system in the NLR-family protein NALP1, a nucleotide-dependent activator of cytokine-processing protease caspase-1, which responds to bacterial ligand muramyl-dipeptide (MDP). Antiapoptotic proteins Bcl-2 and Bcl-X(L) bind and suppress NALP1, reducing caspase-1 activation and interleukin-1beta (IL-1beta) production. When exposed to MDP, Bcl-2-deficient macrophages exhibit more caspase-1 processing and IL-1beta production, whereas Bcl-2-overexpressing macrophages demonstrate less caspase-1 processing and IL-1beta production. The findings reveal an interaction of host defense and apoptosis machinery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.