Abstract
The finding of new integrable coupling systems has become an important area of research in mathematical physics and their study will aid in the classification of multi-component integrable systems. A basic method for generating integrable coupling systems is algebraic expansion, for example, the Frobenius algebra, the Lie algebra, the superalgebra, and so on. In this paper, we introduce a Frobenius Boussinesq equation based on the Frobenius algebra, and then we present a Lax pair of it. It follows that we give a Bäcklund transformation of the Frobenius Boussinesq equation. Furthermore, the lattice equation of the Frobenius Boussinesq equation is presented by using three Bäcklund transformations, and then obtain the exact solutions. Additionally, we obtain the conservation laws of the Frobenius Boussinesq equation via the Bäcklund transformation. Strongly coupled and weakly coupled systems physically represent strong and weak interactions, respectively. In this paper, we introduce a weakly coupled Degasperis–Procesi (DP) equation, and construct a Lax pair of it. In addition, the Bäcklund transformation and superposition principle are applied to investigate the weakly coupled DP equation. We also obtain the conservation laws of the weakly coupled DP equation. Then, we introduce a strongly coupled DP equation, and use the same method to study the strongly coupled DP equation. The exact solutions of these two equations are obtained. Moreover, we introduce a [Formula: see text]-DP equation. Considering the superposition principle, we obtain the solution of an associated [Formula: see text]-DP equation by using Bäcklund transformations. These new multi-component integrable systems can enrich the existing integrable models and possibly describe new nonlinear phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.