Abstract
Atmospheric transport and dispersion models are important tools in radiation protection as they help to estimate the impact of radionuclides released into the atmosphere. In particular, such models can be used in combination with radionuclide observations to estimate unknown source term parameters, or to improve source term estimates obtained through other methods. In this paper, a Bayesian inference system was used to determine the source term parameters and their corresponding credible intervals of a real-world anomalous 75Se release at a nuclear facility in Belgium. Furthermore, a formulation is proposed that not only takes into account true detections, but also true instrumental non-detections, false alarms and real misses. The Bayesian inference system is able to correctly determine the known source location. The Bayesian inference is then refined by fixing the release location and by making stronger assumptions about the release period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.