Abstract

We propose a reduced-order deep-learning surrogate model for dynamic systems described by time-dependent partial differential equations. This method employs space–time Karhunen–Loève expansions (KLEs) of the state variables and space-dependent KLEs of space-varying parameters to identify the reduced (latent) dimensions. Subsequently, a deep neural network (DNN) is used to map the parameter latent space to the state variable latent space.An approximate Bayesian method is developed for uncertainty quantification (UQ) in the proposed KL-DNN surrogate model. The KL-DNN method is tested for the linear advection–diffusion and nonlinear diffusion equations, and the Bayesian approach for UQ is compared with the deep ensembling (DE) approach, commonly used for quantifying uncertainty in DNN models. It was found that the approximate Bayesian method provides a more informative distribution of the PDE solutions in terms of the coverage of the reference PDE solutions (the percentage of nodes where the reference solution is within the confidence interval predicted by the UQ methods) and log predictive probability. The DE method is found to underestimate uncertainty and introduce bias.For the nonlinear diffusion equation, we compare the KL-DNN method with the Fourier Neural Operator (FNO) method and find that KL-DNN is 10% more accurate and needs less training time than the FNO method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.