Abstract

Computing a concise representation of the anatomical variability found in large sets of images is an important first step in many statistical shape analyses. In this paper, we present a generative Bayesian approach for automatic dimensionality reduction of shape variability represented through diffeomorphic mappings. To achieve this, we develop a latent variable model for principal geodesic analysis (PGA) that provides a probabilistic framework for factor analysis on diffeomorphisms. Our key contribution is a Bayesian inference procedure for model parameter estimation and simultaneous detection of the effective dimensionality of the latent space. We evaluate our proposed model for atlas and principal geodesic estimation on the OASIS brain database of magnetic resonance images. We show that the automatically selected latent dimensions from our model are able to reconstruct unseen brain images with lower error than equivalent linear principal components analysis (LPCA) models in the image space, and it also outperforms tangent space PCA (TPCA) models in the diffeomorphism setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.