Abstract

In spatial data, especially in geostatistics data where measurements are often provided by satellite scanning, some parts of data may get missed. Due to spatial dependence in the data, these missing values probably are caused by some latent spatial random fields. In this case, ignoring missingness is not logical and may lead to invalid inferences. Thus incorporating the missingness process model into the inferences could improve the results. There are several approaches to take into account the non-ignorable missingness, one of them is the shared parameter model method. In this paper, we extend it for spatial data so that we will have a joint spatial Bayesian shared parameter model. Then the missingness process will be jointly modeled with the measurement process and one or more latent spatial random fields as shared parameters would describe their association. Bayesian inference is implemented by Integrated nested Laplace approximation. A computationally effective approach is applied via a stochastic partial differential equation for approximating latent Gaussian random field. In a simulation study, the proposed spatial joint model is compared with a model that assumes data are missing at random. Based on these two models, the lake surface water temperature data for lake Vanern in Sweden are analyzed. The results of estimation and prediction confirm the efficiency of the spatial joint model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.