Abstract

Spatial generalised linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. In these models, the spatial correlation structure of data is modelled by spatial latent variables. Most users are satisfied with using a normal distribution for these variables, but in many applications it is unclear whether or not the normal assumption holds. This assumption is relaxed in the present work, using a closed skew normal distribution for the spatial latent variables, which is more flexible and includes normal and skew normal distributions. The parameter estimates and spatial predictions are calculated using the Markov Chain Monte Carlo method. Finally, the performance of the proposed model is analysed via two simulation studies, followed by a case study in which practical aspects are dealt with. The proposed model appears to give a smaller cross-validation mean square error of the spatial prediction than the normal prior in modelling the temperature data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.