Abstract
In the broad sense, the Bayesian networks (BN) are probabilistic graphical models that possess unique methodical features to model dependencies in complex networks, such as forward and backward propagation (inference) of disruptions. BNs have transitioned from an emerging topic to a growing research area in supply chain (SC) resilience and risk analysis. As a result, there is an acute need to review existing literature to ascertain recent developments and uncover future areas of research. Despite the increasing number of publications on BNs in the domain of SC uncertainty, an extensive review on their application to SC risk and resilience is lacking. To address this gap, we analyzed research articles published in peer-reviewed academic journals from 2007 to 2019 using network analysis, visualization-based scientometric analysis, and clustering analysis. Through this study, we contribute to literature by discussing the challenges of current research, and, more importantly, identifying and proposing future research directions. The results of our survey show that further debate on the theory and application of BNs to SC resilience and risk management is a significant area of interest for both academics and practitioners. The applications of BNs, and their conjunction with machine learning algorithms to solve big data SC problems relating to uncertainty and risk, are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.