Abstract

The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC) method is investigated for the calculation of parameter estimates and posterior model probabilities for spatial regression models. The method can accommodate normal and non-normal response data and a large number of covariates. Thus the method is very flexible and can be used to fit spatial linear models, spatial linear mixed models, and spatial generalized linear mixed models (GLMMs). The Bayesian MCMC method also allows a priori unequal weighting of covariates, which is not possible with many model selection methods such as Akaike's information criterion (AIC). The proposed method is demonstrated on two data sets. The first is the whiptail lizard data set which has been previously analyzed by other researchers investigating model selection methods. Our results confirmed the previous analysis suggesting that sandy soil and ant abundance were strongly associated with lizard abundance. The second data set concerned pollution tolerant fish abundance in relation to several environmental factors. Results indicate that abundance is positively related to Strahler stream order and a habitat quality index. Abundance is negatively related to percent watershed disturbance.

Highlights

  • Ecologists and other environmental scientists often consider a large number of plausible regression models in an effort to explain ecological relationships between several covariates and a response variable

  • The top spatial regression model ranks 5th in order with a posterior model probability (PMP) of only 5.5% under the independence assumption

  • The table shows the posterior inclusion probability (PIP) for the analysis without spatial correlation

Read more

Summary

Introduction

Ecologists and other environmental scientists often consider a large number of plausible regression models in an effort to explain ecological relationships between several covariates and a response variable. Model selection procedures, such as Akaike’s information criterion (AIC), are routinely employed to help researchers decide upon an appropriate model to describe the environmental system [1]. In addition to estimating regression coefficients, a geostatistical regression model involves fitting a spatial correlation function to the regression errors. This function allows correlation between observations to decrease as separation in space increases. The term geostatistical regression is used for a spatially correlated regression analysis

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.