Abstract

We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional‐odds cumulative logit model. Time‐to‐event is modeled through a left‐truncated proportional‐hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects.General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event‐free probabilities and predict future longitudinal marker values.The model is applied to the assessment of breast cancer risk in women attending a population‐based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI‐RADS) scale in biennial screening exams. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.