Abstract

We focus on causal inference for longitudinal treatments, where units are assigned to treatments at multiple time points, aiming to assess the effect of different treatment sequences on an outcome observed at a final point. A common assumption in similar studies is sequential ignorability (SI): treatment assignment at each time point is assumed independent of future potential outcomes given past observed outcomes and covariates. SI is questionable when treatment participation depends on individual choices, and treatment assignment may depend on unobservable quantities associated with future outcomes. We rely on principal stratification to formulate a relaxed version of SI: latent sequential ignorability (LSI) assumes that treatment assignment is conditionally independent on future potential outcomes given past treatments, covariates, and principal stratum membership, a latent variable defined by the joint value of observed and missing intermediate outcomes. We evaluate SI and LSI, using theoretical arguments and simulation studies to investigate the performance of the two assumptions when one holds and inference is conducted under both. Simulations show that when SI does not hold, inference performed under SI leads to misleading conclusions. Conversely, LSI generally leads to correct posterior distributions, irrespective of which assumption holds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.