Abstract

The study investigates the hierarchical uncertainty of multi-ensemble hydroclimate projections for the Southern Hills-Gulf region, USA, considering emission pathways and a global climate model (GCM) as two main sources of uncertainty. Forty projections of downscaled daily air temperature and precipitation from 2010 to 2099 under four emission pathways and ten CMIP5 GCMs are adopted for hydroclimate modeling via the HELP3 hydrologic model. This study focuses on evapotranspiration (ET), surface runoff, and groundwater recharge projections in this century. Climate projection uncertainty is characterized by the hierarchical Bayesian model averaging (HBMA) method, which segregates emission pathway uncertainty and climate model uncertainty. HBMA is able to derive ensemble means and standard deviations, arising from individual uncertainty sources, for ET, runoff, and recharge. The model results show that future recharge in the Southern Hills-Gulf region is more sensitive to different climate projections and exhibits higher variability than ET and runoff. Overall, ET is likely to increase and runoff is likely to decrease in this century given the current emission path scenarios. Runoff are predicted to have an 18% to 20% decrease and ET is predicted to have around a 3% increase throughout the century. Groundwater recharge is likely to increase in this century with a decreasing trend. Recharge would increase about 13% in the early century and will have only a 3% increase in the late century. All hydrological projections have increasing uncertainty towards the end of the century. The HBMA result suggests that the GCM uncertainty dominates the overall hydrological projection uncertainty in the early century and the mid-century. The emission pathway uncertainty becomes important in the late century.

Highlights

  • Uncertainties in hydroclimate projections provide necessary information to support the planning and management of future water recourses, but those uncertainties have not been sufficiently addressed in the IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment [1]

  • Based on Equations (13) and (14), we evaluated the posterior model probabilities for the 10 global climate model (GCM) listed in Table 1 using simulated and observed 1950–2006 monthly temperature and precipitation observations

  • Mean and one standard deviation interval resulted from the 10 GCMs and 4 emission pathways in a hierarchical order (Figure 3)

Read more

Summary

Introduction

Uncertainties in hydroclimate projections provide necessary information to support the planning and management of future water recourses, but those uncertainties have not been sufficiently addressed in the IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment [1]. To integrate projections and quantify uncertainty from using multiple prediction models, Bayesian model averaging (BMA) [27] takes into account observational data evidence to determine model weights for averaging, and it performs better than other multi-model methods [28,29] Many studies, such as weather forecasting [30,31], ensemble of climate models [32,33,34,35], and hydrological prediction [36,37,38,39,40,41,42], have adopted BMA for ensemble prediction and uncertainty analysis. Hydrologic modeling; Section 4 discusses the results and findings; and Section 5 concludes the study

Bayesian
Hierarchical
Mean and Variance at the Hierarch Level
Study Area and Model Data
Climate Model Evaluation
Hydrologic Modeling
HELP3 Input Data
Parallel Computation for High-Resolution Hydrologic Prediction
Posterior Model Probabilities
Temporal Analysis with HBMA
Temporal
Annual
Future
Spatial Analysis
Contributions of Sources of Uncertainty
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.