Abstract
The problem of detecting a sinusoidal signal with randomly varying frequency has a long history. It is one of the core problems in signal processing, arising in many applications including, for example, underwater acoustic frequency line tracking, demodulation of FM radio communications, laser phase drift in optical communications and, recently, continuous gravitational wave astronomy. In this paper we describe a Markov Chain Monte Carlo based procedure to compute a specific detection posterior density. We demonstrate via simulation that our approach results in an up to $25$ percent higher detection rate than Hidden Markov Model based solutions, which are generally considered to be the leading techniques for these problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.