Abstract
Learning to hash is one of the most popular techniques in image retrieval, but few work investigates its robustness to noise corrupted images in which the unknown pattern of noise would heavily deteriorate the performance. To deal with this issue, we present in this paper a Bayesian denoising hashing algorithm whose output can be regarded a denoised version of the input hash code. We show that our method essentially seeks to reconstruct a new but more robust hash code by preserving the original input information while imposing extra constraints so as to correct the corrupted bits. We optimized this model in variational Bayes framework which has a closed-form update in each iteration that is more efficient than numerical optimization. Furthermore, our method can be added at the top of any original hashing layer, serving as a post-processing denoising layer with no change to previous training procedure. Experiments on three popular datasets demonstrate that the proposed method yields robust and meaningful hash code, which significantly improves the performance of state-of-the-art hash learning methods on challenging tasks such as large-scale natural image retrieval and retrieval with corrupted images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.