Abstract
IntroductionFor making reliable decisions, practitioners need to estimate uncertainties that exist in data and decision models. In this paper we analyse uncertainties of predicting survival probability for patients in trauma care. The existing prediction methodology employs logistic regression modelling of Trauma and Injury Severity Score (TRISS), which is based on theoretical assumptions. These assumptions limit the capability of TRISS methodology to provide accurate and reliable predictions. MethodsWe adopt the methodology of Bayesian model averaging and show how this methodology can be applied to decision trees in order to provide practitioners with new insights into the uncertainty. The proposed method has been validated on a large set of 447,176 cases registered in the US National Trauma Data Bank in terms of discrimination ability evaluated with receiver operating characteristic (ROC) and precision–recall (PRC) curves. ResultsAreas under curves were improved for ROC from 0.951 to 0.956 (p = 3.89 × 10−18) and for PRC from 0.564 to 0.605 (p = 3.89 × 10−18). The new model has significantly better calibration in terms of the Hosmer–Lemeshow Hˆ statistic, showing an improvement from 223.14 (the standard method) to 11.59 (p = 2.31 × 10−18). ConclusionThe proposed Bayesian method is capable of improving the accuracy and reliability of survival prediction. The new method has been made available for evaluation purposes as a web application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.