Abstract

With the popularization of lithium ion battery cells, the battery thermal management system (BTMS) has been paid much attention since it is important in ensuring the safety and performance of lithium ion battery pack. Although the BTMS based on the forced-air convection with the advantage of low-cost, simple, and tight design has been favored by practical applications in electric vehicles and electrochemical energy storage stations, the forced-air convection is always criticized for its low cooling efficiency and low-temperature uniformity. Thus, extensive investigation has been conducted to optimize the BTMS based on the forced-air convection. This paper reviews the developments on the application of forced-air convection into BTMS in terms of preheating and cooling. Firstly, the thermal models for battery cells are introduced from the perspective of the lumped model and electrochemical model. Meanwhile, the methods to simulate the flow field are also presented. The computational fluid dynamics and short-cut methods have been compared in the paper. The main optimization route is summarized which includes optimization of pure forced-air convection, the combination with phase change material(PCM), and integration with heat pipe. For the optimization of the pure forced-air convection, four technical routes are concluded, which are the location of inlets and outlets, flowing tunnel, controlling strategy, and flowing state. As for the hybrid BTMS based on forced-air convection with heat pipe and PCM, some extra structures such as mesh or finned structure are also included for enhancing the heat dissipation. Finally, some perspectives and outlooks on BTMS based on the forced-air convection are put forward for future development. • The modeling of battery heat generation and flow field were introduced. • The optimization of the pure forced-air convection was classified through a novel method. • The recent researches on the hybrid BTMS based on the forced-air convection was tabulated. • The future perspectives of the BTMS based on the forced-air convection were put forward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.