Abstract

This paper presents a procedure for sizing a Battery Energy Storage System (BESS) for the purposed of shaving the peak demand of a residential distribution feeder. The BESS power and energy storage rating are determined from actual load demand data and desired level of peak reduction using the load following method. The impact of distributed photovoltaic (PV) power generation (to be installed by residential customers) on the feeder load curve, and on the BESS sizing is explored. It is determined that while PV installations have no impact on the BESS power rating, they reduce its energy storage capacity in proportion with the PV penetration level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.