Abstract

BackgroundNew Zealand's lesser short-tailed bat Mystacina tuberculata is one of only two of c.1100 extant bat species to use a true walking gait when manoeuvring on the ground (the other being the American common vampire bat Desmodus rotundus). Mystacina tuberculata is also the last surviving member of Mystacinidae, the only mammalian family endemic to New Zealand (NZ) and a member of the Gondwanan bat superfamily Noctilionoidea. The capacity for true quadrupedal terrestrial locomotion in Mystacina is a secondarily derived condition, reflected in numerous skeletal and muscular specializations absent in other extant bats. The lack of ground-based predatory native NZ mammals has been assumed to have facilitated the evolution of terrestrial locomotion and the unique burrowing behaviour of Mystacina, just as flightlessness has arisen independently many times in island birds. New postcranial remains of an early Miocene mystacinid from continental Australia, Icarops aenae, offer an opportunity to test this hypothesis.ResultsSeveral distinctive derived features of the distal humerus are shared by the extant Mystacina tuberculata and the early Miocene Australian mystacinid Icarops aenae. Study of the myology of M. tuberculata indicates that these features are functionally correlated with terrestrial locomotion in this bat. Their presence in I. aenae suggests that this extinct mystacinid was also adapted for terrestrial locomotion, despite the existence of numerous ground-based mammalian predators in Australia during the early Miocene. Thus, it appears that mystacinids were already terrestrially-adapted prior to their isolation in NZ. In combination with recent molecular divergence dates, the new postcranial material of I. aenae constrains the timing of the evolution of terrestrial locomotion in mystacinids to between 51 and 26 million years ago (Ma).ConclusionContrary to existing hypotheses, our data suggest that bats are not overwhelmingly absent from the ground because of competition from, or predation by, other mammals. Rather, selective advantage appears to be the primary evolutionary driving force behind habitual terrestriality in the rare bats that walk. Unlike for birds, there is currently no evidence that any bat has evolved a reduced capacity for flight as a result of isolation on islands.

Highlights

  • New Zealand's lesser short-tailed bat Mystacina tuberculata is one of only two of c.1100 extant bat species to use a true walking gait when manoeuvring on the ground

  • When and from where mystacinids first colonized New Zealand (NZ) is not yet clear, but early Miocene mystacinid fossils have recently been found in NZ [4,5] and middle Cenozoic Australia has been proposed as their probable source [4,6]

  • It can be expected that I. aenae had similar capacities of powerful metacarpal extension. If this arrangement is related to levering the animal off the ground, as we suggest here, it would be a strong indication of terrestriality in I. aenae

Read more

Summary

Introduction

New Zealand's lesser short-tailed bat Mystacina tuberculata is one of only two of c.1100 extant bat species to use a true walking gait when manoeuvring on the ground (the other being the American common vampire bat Desmodus rotundus). Mystacina tuberculata is the last surviving member of Mystacinidae, the only mammalian family endemic to New Zealand (NZ) and a member of the Gondwanan bat superfamily Noctilionoidea. Two of c.1100 extant bat species use a true walking gait when manoeuvring on the ground – the lesser shorttailed bat Mystacina tuberculata of NZ, and the common vampire bat Desmodus rotundus of Central and South America [1]. Mystacinids and phyllostomids fall within the Gondwanan bat superfamily Noctilionoidea, but molecular divergence dates indicate that the two families diverged 41–51 Ma [7], and terrestrial locomotion appears to have evolved independently in Mystacina and Desmodus

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.