Abstract
This paper considers the batch gradient method with the smoothing $$\ell _0$$l0 regularization (BGSL0) for training and pruning feedforward neural networks. We show why BGSL0 can produce sparse weights, which are crucial for pruning networks. We prove both the weak convergence and strong convergence of BGSL0 under mild conditions. The decreasing monotonicity of the error functions during the training process is also obtained. Two examples are given to substantiate the theoretical analysis and to show the better sparsity of BGSL0 than three typical $$\ell _p$$lp regularization methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.