Abstract

Middle vessel batch distillation (MVBD) is an energy-efficient configuration for separation of a ternary mixture. This paper focuses on improving the performance of this configuration through dynamic optimization of vessel holdup. Initially, a performance measure accounting for separation and energy efficiency is defined to characterize an operational policy. Subsequently, this measure is maximized by dynamically redistributing holdup in the three (top, middle and bottom) vessels. With the help of two case studies, the impact of various policy decisions and market conditions (such as initial feed distribution and relative cost of products and energy) on the optimal operating policy is analyzed. Specifically, the improvement obtained via holdup redistribution is explained with the help of fundamental concepts of distillation. Lastly, the performance of the proposed approach is compared with some of the existing methods and validated through rigorous simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.