Abstract

Abstract Diatomaceous earth (DE) was enriched with aluminium oxide, via the co-precipitation method, to produce a permeable, reactive material (AD) for groundwater defluoridation. The AD was characterized, using appropriate instrumental methods, and the defluoridation potential was evaluated in a batch process. The infusion of amorphous aluminium oxide on the DE was confirmed by X-ray diffraction analysis and the optimum calcination temperature for AD synthesis was attained at a temperature of 250 °C. The kinetic analysis of the time–concentration profile of the defluoridation process showed that the pseudo second order gave better description and the value of the approaching equilibrium factor ( R W q e = 13.1 mg/g) obtained for AD was comparable with what has been reported for other aluminium rich materials, used as sorbents in batch defluoridation processes. Evidences from the results of kinetic analysis and the results obtained from the process variables (i.e. F − solution pH, ionic strength, and anionic interference) optimization procedures showed that the mechanism of the defluoridation process occurred via inner sphere association, a chemical process that is specific to F − on the AD surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.