Abstract

Stimulation of the basolateral Na(+)/K(+)-ATPase in the isolated perfused rabbit cortical collecting duct by raising either bath potassium or lumen sodium increases potassium secretion, sodium absorption and their apical conductances. Here we determined the effect of stimulating Na(+)/K(+)-ATPase on potassium secretion without luminal sodium transport. Acutely raising bath potassium concentrations from 2.5 to 8.5 mM, without luminal sodium, depolarized the basolateral membrane and transepithelial voltages while increasing the transepithelial, basolateral and apical membrane conductances of principal cells. Fractional apical membrane resistance and cell pH were elevated. Net potassium secretion was maintained albeit diminished and was still enhanced by raising bath potassium, but was reduced by basolateral ethylisopropylamiloride, an inhibitor of Na(+)/H(+) exchange. Luminal iberitoxin, a specific inhibitor of the calcium-activated big-conductance potassium (BK) channel, impaired potassium secretion both in the presence and absence of luminal sodium. In contrast, iberitoxin did not affect luminal sodium transport. We conclude that basolateral Na(+)/H(+) exchange in the cortical collecting duct plays an important role in maintaining potassium secretion during compromised sodium supplies and that BK channels contribute to potassium secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.