Abstract

Transepithelial di/tripeptide transport in enterocytes occurs via the apical proton-coupled peptide transporter, hPEPT1 (SLC15A1) and a basolateral peptide transporter, which has only been characterized functionally. In this study we examined the pH dependency, substrate uptake kinetics and substrate specificity of the transporter. We studied the uptake of [(14) C]Gly-Sar from basolateral solution into Caco-2 cell monolayers grown for 17-22 days on permeable supports, at a range of basolateral pH values. Basolateral Gly-Sar uptake was pH dependent, with a maximal uptake rate at a basolateral pH of 5.5. Uptake of Gly-Sar decreased in the presence of the protonophore nigericin, indicating that the uptake was proton-coupled. The uptake was saturable, with a maximal flux (Vmax ) of 408 ± 71, 307 ± 25 and 188 ± 19 pmol/cm(2) /min (mean ± S.E., n = 3) at basolateral pH 5.0, 6.0 and 7.4, respectively. The compounds Gly-Asp, Glu-Phe-Tyr, Gly-Glu-Gly, Gly-Phe-Gly, lidocaine and, to a smaller degree, para-aminohippuric acid were all shown to inhibit the basolateral uptake of Gly-Sar. The study showed that basolateral Gly-Sar transport in the intestinal cell line Caco-2 is proton-coupled. The inhibitor profile indicated that the transporter has broad substrate specificity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.