Abstract
Many engineering problems are described by systems of nonlinear equations, which may exhibit multiple solutions, in a challenging situation for root-finding algorithms. The existence of several solutions may give rise to complex basins of attraction for the solutions in the algorithms, with severe influence in their convergence behavior. In this work, we explore the relationship of the basins of attractions with the critical curves (the locus of the singular points of the Jacobian of the system of equations) in a phase equilibrium problem in the plane with two solutions, namely the calculation of a double azeotrope in a binary mixture. The results indicate that the conjoint use of the basins of attraction and critical curves can be a useful tool to select the most suitable algorithm for a specific problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.