Abstract

AbstractBasic algebras were introduced by Chajda, Halaš and Kühr as a common generalization of MV-algebras and orthomodular lattices, i.e. algebras used for formalization of non-classical logics, in particular the logic of quantum mechanics. These algebras were represented by means of lattices with section involutions. On the other hand, classical logic was formalized by means of Boolean algebras which can be converted into Boolean rings. A natural question arises if a similar representation exists also for basic algebras. Several attempts were already realized by the authors, see the references. Now we show that if a basic algebra is commutative then there exists a representation via certain semirings with involution similarly as it was done for MV-algebras by Belluce, Di Nola and Ferraioli. These so-called basic semirings, their ideals and congruences are studied in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.