Abstract

The central object of our study is a certain class of infinite-dimensional Lie algebras alternatively known as contragredient Lie algebras, generalized Cartan matrix Lie algebras or Kac-Moody algebras. Their definition is a rather straightforward “infinite-dimensional” generalization of the definition of semisimple Lie algebras via the Cartan matrix and Chevalley generators. The slight technical difficulty that occurs in the case det A = 0 is handled by introducing the “realization” in the “Cartan subalgebra” h. The Lie algebra o(A) is then a quotient of the Lie algebra õ(A) with generators e i , f i and h, and defining relations (1.2.1), by the maximal ideal intersecting h trivially. Some of the advantages of this definition as compared to the one given in the introduction, as we will see, are as follows: the definition of roots and weights is natural; the Weyl group acts on a nice convex cone; the characters have a nice region of convergence.KeywordsCartan MatrixFormal TopologyChevalley GeneratorGeneralize Cartan MatrixRoot Space DecompositionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.