Abstract

State-of-the-art external quantum efficiencies (EQEs) have exceeded 20% for near-infrared, red, and green perovskite light-emitting diodes (PeLEDs) so far. Nevertheless, the cutting-edge blue counterparts demonstrate an inferior device performance, which impedes the commercialization and industrialization of PeLEDs in ultrahigh-definition displays. As the most popular hole transport layer, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) bears the acidic and hygroscopic drawbacks, which deteriorates the device efficiency and long-term stability of blue PeLEDs. In this work, the basic amino acids with zwitterionic characteristics are proposed to modulate the pH of PEDOT:PSS, which are arginine, lysine, and histidine. It is found that they play a triple function to the blue perovskite films: modulating the acidity of PEDOT:PSS, controlling the crystalline process, and passivating the defects at the PEDOT:PSS/perovskite interface. As a result, the utilization of neutral PEDOT:PSS leads to a significant enhancement in stability and photoluminescence quantum yield. Eventually, the pure-blue PeLEDs achieve a record EQE of 5.6% with the emission peak at 467 nm. This research proves that the interfacial engineering of hole transport layers is a reliable strategy to enhance the device efficiency and operation stability of blue PeLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.