Abstract

Baseline wander is a low-frequency additive noise affecting almost all bioelectrical signals, in particular the ECG. In this paper, we propose a novel approach to baseline wander estimation and removal for bioelectrical signals, based on the notion of quadratic variation reduction. The quadratic variation is meant as a measure of variability for vectors or sampled functions, and is a consistent measure in this regard. Baseline wander is estimated solving a constrained convex optimization problem where quadratic variation enters as a constraint. The solution depends on a single parameter whose value is not critical, as proven by a sensitivity analysis. Numerical results confirm the effectiveness of the approach, which outperforms state-of-the-art algorithms. The algorithm compares favorably also in terms of computational complexity, which is linear in the size of the vector to detrend. This makes it suitable for real-time applications as well as for applications on devices with reduced computing power, such as handheld devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.