Abstract

We consider energy-efficient wireless resource management in cellular networks where BSs are equipped with energy harvesting devices, using statistical information for traffic intensity and harvested energy. The problem is formulated as adapting BSs' on-off states, active resource blocks (e.g. subcarriers) as well as power allocation to minimize the average grid power consumption in a given time period while satisfying the users' quality of service (blocking probability) requirements. It is transformed into an unconstrained optimization problem to minimize a weighted sum of grid power consumption and blocking probability. A two-stage dynamic programming (DP) algorithm is then proposed to solve this optimization problem, by which the BSs' on-off states are optimized in the first stage, and the active BS's resource blocks are allocated iteratively in the second stage. Compared with the optimal joint BSs' on-off states and active resource blocks allocation algorithm, the proposed algorithm greatly reduces the computational complexity, while at the same time achieves close to the optimal energy saving performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.