Abstract

A novel SiGeC HBT process with a quasi-self-aligned emitter-base architecture and a fully nickel-silicided extrinsic base region has been developed. A very low total base resistance R/sub B/ was achieved along with simultaneous NiSi formation on the polycrystalline emitter and collector regions. Uniform silicide formation was obtained across the wafer, and the resistivity of the Ni(SiGe:C) silicide layer was 24 μ/spl Omega//spl middot/cm. About 50-100 nm of lateral growth of silicide underneath the emitter pedestal was observed. DC and HF results with balanced f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> /f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> values of 41/42 GHz were demonstrated for 0.5×10μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.