Abstract

Basal ganglia circuits are organized to selected desired actions and to inhibit potentially competing unwanted actions. This is accomplished through a complex circuitry that is modified through development and learning. Mechanisms of neural plasticity underlying these modifications are increasingly understood, but new mechanisms continue to be discovered. Dystonia, a movement disorder characterized by involuntary muscle contractions that cause abnormal postures and movements. Emerging evidence points to important links between mechanisms of plasticity and the manifestations of dystonia. Investigation of these mechanisms has improved understanding of the action of currently used medication and is informing the development of new treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.