Abstract

We consider numerical methods for the extreme eigenvalue problem of large scale symmetric positive definite matrices. By the variational principle, the extreme eigenvalue can be obtained by minimizing some unconstrained optimization problem. Firstly, we propose two adaptive nonmonotone Barzilai-Borwein-like methods for the unconstrained optimization problem. Secondly, we prove the global convergence of the two algorithms under some conditions. Thirdly, we compare our methods with eigsand the power method for the standard test problems from the UF Sparse Matrix Collection. The primary numerical experiments indicate that the two algorithms are promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.