Abstract
We report results from studies of baryon ground and resonant states by taking explicit mesonic degrees of freedom into account. We are following a relativistic coupled-channels approach relying on a Poincaré-invariant mass operator in matrix form. Generally, it corresponds to a bare particle that is coupled to a number of further mesonic channels. Here we present results, where the bare particle is either a bare nucleon or a bare Delta coupled to pion–nucleon and pion–Delta channels, respectively. For the pion–baryon vertices we employ coupling constants and form factors from different models in the literature. From the mass-operator eigenvalue equation we obtain the pion-dressing effects on the nucleon mass as well as the mass and pion-decay width of the Delta. The dressed masses become smaller than the bare ones, and a finite width of the Delta is naturally generated. The results are relevant for the construction of constituent-quark models for baryons, which have so far not included explicit mesonic degrees of freedom, but have rather relied on three-quark configurations only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.