Abstract

This work presents a novel method for extracting potential barrier distributions from experimental fusion cross sections. We utilize a simple Gaussian process regression (GPR) framework to model the observed cross sections as a function of energy for three nuclear systems. The GPR approach offers a flexible way to represent the experimental data, accommodating potentially complex behavior without introducing strong prior assumptions. This method is applied directly to experimental data and is compared to the traditional direct extraction technique. We discuss the advantages of GPR-based barrier distribution extraction, including the capability to quantify uncertainties and robustness to noise in the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.