Abstract

Abstract As the surface drag is increased in a comprehensive general circulation model (GCM), the upper-level zonal winds decrease and eddy momentum flux convergence into the jet core increases. Globally averaged eddy kinetic energy decreases, a response that is inconsistent with the conventional barotropic governor mechanism whereby decreased barotropic shears encourage baroclinic wave growth. As the conventional barotropic governor appears insufficient to explain the entire response in the comprehensive GCM, the nondivergent barotropic model on the sphere is used to demonstrate an additional mechanism for the effect of surface drag on eddy momentum fluxes and eddy kinetic energy. Analysis of the pseudomomentum budget shows that increased drag modifies the background meridional vorticity gradient, which allows for enhanced eddy momentum flux convergence and decreased eddy kinetic energy in the presence of a constant eddy source. This additional feedback may explain the changes in eddy momentum fluxes observed in the comprehensive GCM and was likely present in previous work on the barotropic governor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.