Abstract

Bardoxolone methyl (Bard), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator regulates multiple oxidative and inflammatory diseases. However, the role of Bard in painful diabetic neuropathy (DN) remains unknown. Bard administration at two dose levels (15 & 30mg/kg/day) to STZ (55mg/kg, i.p) induced diabetic rats for last two weeks of eight week study significantly improved motor nerve conduction velocity (61.84 ± 1.9 vs. 38.57 ± 1.08m/s), sensory nerve conduction velocity (66.86 ± 5.1 vs. 39.43 ± 3.3m/s), nerve blood flow (86.28 ± 6.4 vs. 56.56 ± 1.62 PU), and intraepidermal nerve fiber density. Additionally, Bard treatment attenuated thermal and mechanical hyperalgesia in diabetic rats. Further molecular investigation on dorsal root ganglions (DRG) tissue isolated from L4-L6 regions of diabetic rats and High glucose (HG) exposed PC12 cells displayed decreased expression and transcriptional activity of Nrf2 which might have resulted in depleted antioxidant enzymes and mitochondrial chaperones. Bard treatment significantly reversed these effects in diabetic rats and also in HG exposed PC12 cells. Moreover, mitochondrial complex activities were diminished in DRG mitochondrial fractions of diabetic rats and mitochondrial isolates of HG exposed PC12 cells and Bard treatment significantly reversed these effects. Furthermore, Bard treatment significantly impeded the impact of hyperglycemic insults on mitochondrial membrane potential, ROS production and mitochondrial oxygen consumption rate (OCR) (Basal respiration, Maximal respiration, ATP production and spare respiratory capacity) in PC12 cells. Collectively our data suggests that Bard treatment to STZ induced diabetic rats robustly reduces DN which may be due to its effect on Keap1-Nrf2-ARE pathway and have contributed to improvement in mitochondrial function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.