Abstract

We revisit the offset optimization problem for maximization of two-way progression bands. A new formulation is proposed relying on the concepts of relative offset and vehicle arrival functions. Vehicle arrival functions represent the probability that a vehicle reaches a given intersection at a given time. Relative offsets are the displacement of the arrival functions with respect to a moving coordinate frame. An explicit formula for the bandwidth is derived based on these two quantities. The bandwidth maximization problem is then formulated as an unconstrained nonlinear program. The cases of pulse and Gaussian arrivals are considered in detail. Numerical techniques are proposed for both that return globally optimal solutions with small computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.