Abstract

PurposeThe aim of this paper is to provide the theoretical conceptualization of a bandpass (BP) negative group delay (NGD) microstrip circuit. The main objective is to provide a theorization of the particular geometry of the microstrip circuit with experimental validation of the NGD effect.Design/methodology/approachThe methodology followed in this work is organized in three steps. A theoretical model is established of equivalent S-parameters model using Y-matrix analysis. The GD analysis is also presented by showing that the circuit presents a possibility to generate NGD function around certain frequencies. To validate the theoretical model, as proof-of-concept (POC), a microstrip prototype is designed, fabricated and tested.FindingsThis work clearly highlighted the modelled (analytical design model), simulated (ADS simulation tool) and measured results are in good correlation. Relying on the proposed theoretical, numerical and experimental models, the BP NGD behaviour is validated successfully with GD responses specified by the NGD centre frequency: it is observed around 2.35 GHz, with an NGD value of about −2 ns.Research limitations/implicationsIt is to be noticed the proposed GD analysis requires limitations of the theoretical NGD model. It is depicted and validated through a POC demonstrating that the circuit presents a possibility to generate NGD function around certain frequencies (assuming constraints around usable frequency and bandwidth).Practical implicationsThe NGD O-shape topology developed in this work could be exploited in the future in the microwave and radiofrequency context. Thus, it is expected to develop GD equalization technique for radiofrequency and microwave filters, GD compensation of oscillators, filters and communication systems, design of broadband switch-less bi-directional amplifiers, efficient enhancement of feedforward amplifiers, design method of frequency independent phase shifters with negligible delay, synthesis method of arbitrary-angle beamforming antennas. The BP NGD behavior may also be successfully used for the reduction of resonance effect for the electronic compatibility (EMC) of electronic devices.Social implicationsThe non-conventional NGD O-circuit theoretical development and validation through experimental POC could be exploited by academic and industrial developers in the area of wireless communications including, but not restricted to, 5-generation communication systems. The use of the remarkable NGD effect is also useful for the mitigation of electromagnetic interferences between electronic devices and more and more complex electromagnetic environment (current development of Internet of Things[ IoT]).Originality/valueThe originality of this work relies on the new NGD design proposed in this work including the extraction of S-matrix parameters of the microstrip novel structure designed. The validation process based upon an experimental POC showed very interesting levels of NGD O-circuit (nanosecond-GD duration).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.