Abstract

Considering 105 ZnO polymorphs we use many body GW and density functional based calculations to probe how the band gap is affected by nanoporosity. Within a reasonable range of energetic stability, we predict that nanoporosity can induce band gap increases of up to ~1.5 eV relative to wurtzite ZnO. Our results further imply that structural stability and band gap increase are fundamentally linked to pore system dimensionality. We suggest that nanoporosity could be employed as a general band gap engineering method for morphologically and electronically tailored functional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.