Abstract

The mixed anion material Bi4O4SeCl2 has an ultralow thermal conductivity of 0.1 W m–1 K–1 along its stacking axis (c axis) at room temperature, which makes it an ideal candidate for electronic band structure optimization via doping to improve its thermoelectric performance. Here, we design and realize an optimal doping strategy for Bi4O4SeCl2 from first principles and predict an enhancement in the density of states at the Fermi level of the material upon Sn and Ge doping. Experimental work realizes the as-predicted behavior in Bi4–xSnxO4SeCl2 (x = 0.01) through the precise control of composition. Careful consideration of multiple accessible dopant sites and charge states allows for the effective computational screening of dopants for thermoelectric properties in Bi4O4SeCl2 and may be a suitable route for assessing other candidate materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.