Abstract

The Anderson localization problem for a noninteracting two-dimensional electron gas subject to a strong magnetic field, disordered potential, and spin-orbit coupling is studied numerically on a square lattice. The nature of the corresponding localization-delocalization transition and the properties of the pertinent extended states depend on whether the spin-orbit coupling is uniform or fully random. For uniform spin-orbit coupling (such as Rashba coupling due to a uniform electric field), there is a band of metallic extended states in the center of a Landau band as in a "standard" Anderson metal-insulator transition. However, for fully random spin-orbit coupling, the familiar pattern of Landau bands disappears. Instead, there is a central band of critical states with definite fractal structure separated at two critical energies from two side bands of localized states. Moreover, finite size scaling analysis suggests that for this novel transition, on the localized side of a critical energy E_{c}, the localization length diverges as ξ(E)∝exp(α/sqrt[|E-E_{c}|]), a behavior which, together with the emergence of a band of critical states, is reminiscent of a Berezinskii-Kosterlitz-Thouless transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.