Abstract

Regulating the photo-response region of iron metal-organic frameworks (Fe-MOFs) is a viable strategy for enhancing their practical application in the visible-light driven photo-Fenton-like process. This study developed a novel pyrazine-based Fe-MOFs (MIL-101(Fe)-Pz) by substituting the 1,4-dicarboxybenzene acid ligands in typical MIL-101(Fe) with 2,5-pyrazinedicarboxylic acid (PzDC), in which sodium acetate was used as coordinative modulator to control the crystal size (2–3 µm). The incorporation of Fe-pyridine N coordination structures originated from PzDC ligands gave MIL-101(Fe)-Pz narrowed band gap (1.45 eV) than MIL-101(Fe) (2.54 eV) resulting in improved visible-light adsorption capacity (λ > 420 nm), and also increased the proportion of Fe(II) in the Fe-clusters. Thus MIL-101(Fe)-Pz exhibited a synergistic enhanced photo-Fenton-like catalytic performance under visible-light irradiation. The MIL-101(Fe)-Pz/H2O2/Vis system could degrade 99% of sulfamethoxazole within 30 min, which was 10-fold faster than that of the pristine MIL-101(Fe), it also effectively removed other organic micropollutants with high durability and stability. Mechanistic analysis revealed that the PzDC ligands substitution decreased the band gap of MIL-101(Fe), giving MIL-101(Fe)-Pz appropriate band structure (-0.40 – 1.05 V vs NHE) which can cover several light-driven process for the generation of reactive oxygen species, including Fe(III) reduction and H2O2 activation for accelerating •OH generation, as well as oxygen reduction reaction for generating H2O2, O2•− and 1O2. This study highlights the role of pyridine-N containing ligands in regulating the band structure of Fe-MOFs, providing valuable guidance for the design of Fe-MOFs photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.